LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – CHEMISTRY THIRD SEMESTER – NOVEMBER 2009

CH 3812 / 4807- CHEMICAL KINETICS

Date & Time: 10/11/2009 / 9:00 - 12:00	Dept. No.	Max. : 100 Marks
Date & Time: 10/11/2009 / 9:00 - 12:00	Dept. No.	Max. : 100 Mark

PART A

Answer ALL the questions.

 $(10 \times 2 = 20 \text{ Marks})$

- 1. Differentiate between time order and concentration order with special reference to the thermal decomposition of CH₃CHO.
- 2. The experimentally determined energy of activation for the decomposition of N_2O_5 to give NO_2 and O_2 is $104.2 \text{ kJ mol}^{-1}$. Calculate the energy of activation at 400^{0}C according to collision theory expression
- 3. Write down the expression for the rate constant of a reaction between two non linear molecules forming a linear transition state on the basis of ARRT.
- 4. The rate of a reaction between X and Y^{2-} has been investigated in aqueous solution at 298 K and the second order rate constant (k_2^0) at zero ionic strength is found to be $0.745 \text{ M}^{-1} \text{ s}^{-1}$. When ionic strength of the medium (μ) is 1.60×10^{-3} M, the second order rate constant (k_2) is $0.901 \text{ M}^{-1} \text{ s}^{-1}$. Predict the charge on X.
- 5. Oxidation of aliphatic alcohols by bis(trifuoroacetoxy) iodobenzene exhibited excellent isokinetic relationship. What is your inference about the mechanism of this reaction?
- 6. What are Skrabal plots?
- 7. For a single substrate enzyme catalysed reaction with a single active site, $K_M = 25 \times 10^{-3} M^{-1}$ and a turn over number of $4 \times 10^7 s^{-1}$. Calculate the initial rate with $[E]_0 = 16 \times 10^{-8} M$ and $[S]_0 = 4.32 \times 10^{-6} M$.
- 8. What is capillary condensation?
- 9. For the reaction $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ the observed rate constant was found to decrease with increase in temperature. Explain
- 10. For a parallel I order reaction, $k_1 = 3.74 \text{ s}^{-1}$ and $k_2 = 4.65 \text{ s}^{-1}$. What is the maximum percentage of 'C' obtainable at this temperature, if the reactions are $A \rightarrow B$ and $A \rightarrow C$?

PART – B

Answer ANY EIGHT questions

 $(8 \times 5 = 40 \text{ Marks})$

- 11. Calculate the translational partition function for CO in the standard state of 10³ mol m⁻³ at 27⁰C for the purpose of calculation of free energy.
- 12. If the rate constant at high pressures for the isomerization of cyclopropane is $1.2 \times 10^{-2} \text{ s}^{-1}$ and that at low pressures is $3.46 \times 10^{-6} \text{ torr}^{-1} \text{ s}^{-1}$, below what pressure will the isomerization be for all practical purposes a second order reaction?
- 13. Give the significance of Taft Equation
- 14. Describe the need for the energy of activation from the potential energy curves of the following reaction. $H_AH_B + H_C \iff H_BH_C + H_A$
- 15. The rate constant for a certain unimolecular reaction is $2.5 \times 10^{-2} \text{ s}^{-1}$ at 500^{0}C and the energy of activation for this reaction at this temperature is 68 kJ per mole. Determine $\Delta S^{\#}$, $\Delta H^{\#}$ and $\Delta G^{\#}$ for this reaction at this temperature.
- 16. Determine the general expression for the k_n and $t_{1/2}$ for n^{th} order reaction, when n>1
- 17. Derive an expression for the relaxation time for a reaction of the type A,=> C+B which is first order (forward) and second order (backward).
- 18. Write BET equation. Mention the terms involved. How is the equation verified? (2+3)

- 19. Explain the potential energy diagrams for a reaction proceeding through i) Arrhenius type intermediate ii) van't Hoff type intermediate.
- 20. The first three steps in the decay of U-238 are U-238 \rightarrow Th-234 \rightarrow Pa-234 \rightarrow U-234 with half lives 4.5 x10⁹ y, 24.1 days and 1.14 min respectively. If we start with pure U-238, what fraction will be Th-234 after 80 days?
- 21. 2:2' bipyridine forms a complex with Ru^{2+} that has a strong MLCT transition at 450 nm. The quenching of the complex excited state by $[Fe(H_2O)_6]^{3+}$ was monitored by measuring emission life time at 600 nm. In a typical plot of $1/\tau$ vs [Q] a straight line was got with slope = 3 x 10^9 . What conclusion can you draw? Evaluate K_{SV} .
- 22. For a weak organic base (B) in 2×10^{-2} M HClO₄, [BH⁺]/[B] = 0.01. Calculate i) pK_{BH+} for the conjugate acid of the base ii) the ratio of [BH+]/[B] in a solution of [H₃O⁺] = 0.05 M using the same Hammett base. Also calculate H₀ value.

PART - C

Answer ANY FOUR questions

 $(4 \times 10 = 40 \text{ Marks})$

- 23. a) 90 Sr generated during nuclear explosions is a health hazard, since it gets incorporated in place of Ca²⁺ in bones. It decays by beta emission. The half life of 90 Sr is 28 years. If 2 µg of 90 Sr is absorbed by a newly born child, how much of it is left behind after 75 years.
 - b) Describe how the internal pressure will affect the rate of a reaction between neutral molecules.
- 24. a) Calculate the number of collisions per second between nitrogen molecules and oxygen molecules in 1 cm³ of an equimolecular mixture of gases at 27°C and at a total pressure 101.3 kPa pressure, given the molecular radius of oxygen to be 1.46 x10⁻⁸ cm and that of nitrogen is 1.58 x10⁻⁸ cm.
 - b) Using double sphere model for a reaction between two ions derive the relation connecting the rate constant and dielectric constant of the medium and explain. (5)
- 25. a) Explain how the catalytic constants be evaluated for a reaction catalysed both by general acid and general base in water (6)
 - b) What is Bronsted catalytic law? How is it verified? (4)
- 26. Deduce the rate law for the reaction, $2O_3 \rightarrow 3O_2$ if it follows the mechanistic scheme:

$$k_1 & k_3 \\ (i) & O_3 \Leftrightarrow O_2 + O \\ & k_2 & (ii) & O_3 + O \Rightarrow 2O_2 \\ \end{pmatrix}$$
 (slow)

Using 1) fast equilibrium step (i) 2) steady state approximation for 'O' and explain. How is E_a for the reaction obtained using fast equilibrium step (i)

- 27. Explain any two of the following:
 - a) Rideal-Eley mechanism for a bimolecular surface reaction with an example.
 - b) Evaluation of kinetic parameters for an enzymatic reaction
 - c) Flash phtolysis d) Kinetics of $2H_2 + O_2 \rightarrow 2H_2O$ in the presence of electric spark
- 28. For the oxidation of thiosulphate ion by hexacyano ferrate (III) in aqueous perchloric acid, the following data were obtained: i) The plots of log $[Fe(CN)_6^{3-}]$ vs time were linear. ii) The rate increased linearly with $[S_2O_3^{2-}]$ and the plots of pseudo first order rate constants (k_{obs}) vs $[S_2O_3^{2-}]$ at constant ionic strength and at constant $[H^+]$ passed through the origin. iii) At constant $[Fe(CN)_6^{3-}]$, $[S_2O_3^{2-}]$ and ionic strength, increasing $[HClO_4]$ increased the rate. The order with respect to $[H^+]$ was less than unity. Plots of $[S_2O_3^{2-}]/k_{obs}$ vs $1/[H^+]$ were linear. iv) The rate was found to increase with increasing ionic strength of the medium. v) $\Delta S^{\#}$ is negative. (5)

Propose a suitable mechanism to account for the above data and derive the rate law. (5)
